【特別企画】

AIの開発を変革し、お客様のサービスの付加価値を高める

[2020/01/16 14:30] ブックマーク ブックマーク

企業のAI導入を、企業ごとにサポート

企業のAI導入を、企業ごとにサポート

⇒ PDFのダウンロードはこちら

AIの開発工程では「仮説立案」「データ収集」「データ読み込み」「データ成型」「AIモデル実装」「パラメーター調整」「学習の実行」「学習精度検証」と幾つもの手順を踏む。なかでも「学習の実行」における待ち時間を課題としている企業も少なくなく、そこを解決しなければ、AI開発に要する期間の短縮は難しいといえる。本稿では、今挙げた課題を抱えていた富士ソフトがあるソリューションを導入したことで、顧客への価値提供のスピードを向上させた事例を紹介する。

AI開発のカギは、「学習の実行」における待ち時間の短縮

システムインテグレーターとAI開発の実績を組み合わせ、「AIインテグレーター」ビジネスを加速する富士ソフト。同社は、「顧客のビジネススピードを優先すること」が大きな付加価値だとし、優れたソリューションを提供するだけでなく、顧客に提供するまでのスピードも重視している。しかしAIやディープラーニングの領域では、このスピード感を出すことは簡単ではない。

高精度なAIをいかに迅速に開発するか。この課題に対し、富士ソフトは2018年春にGPU「NVIDIA Tesla P100」を4枚搭載したAIワークステーションを導入した。これにより一般的なPCでは720時間かかる画像学習を72時間で完了させることに成功。そしてこの結果を受けて、同社は2019年4月、「NVIDIA DGX-2」の導入に踏み切った。

ディープラーニング専用スーパーアプライアンスコンピュータ「NVIDIA DGX-2」

ディープラーニング専用スーパーアプライアンスコンピュータ「NVIDIA DGX-2」
資料提供:NVIDIA


学習時間を1/3に短縮し、提供スピードを上昇

DGX-2の性能は想像以上で、骨折を予測する医療AIプロジェクトの開発事例では画像学習をわずか6時間で完了。先ほどのAIワークステーションでは18時間かかる試算であり、学習時間を1/3に短縮できたこととなる。そのほか、1週間かかっていたAIの試験も1~2日で終わるようになり、学習時間の短期化によって、本来注力しなければならない仮説検証やAIモデルの選定などに注力できるようになった。

顧客へ提案や価値提供を行うまでのスピードが向上したことを受け、富士ソフト株式会社 イノベーション統括部 戦略推進部 部長 の三塚正文氏は「問い合わせに対するレスポンスの早さや回答の質も含めて、サポート体制には有益性を感じている」と、高い満足度を示している。

*  *  *

本稿でDLできるPDFでは、「NVIDIA DGX-2」を導入した富士ソフトの事例について詳細を紹介している。AI開発のスピード感を高めたい企業の方はぜひご一読いただきたい。

ダウンロード資料のご案内

NVIDIA DGX-2が支える富士ソフトの
AIインテグレーションビジネス

>> PDFのダウンロードはこちら

[PR]提供: NVIDIA

この記事に興味を持ったら"いいね!"を Click
Facebook で IT Search+ の人気記事をお届けします
注目の特集/連載
[解説動画] Googleアナリティクス分析&活用講座 - Webサイト改善の正しい考え方
[解説動画] 個人の業務効率化術 - 短時間集中はこうして作る
ミッションステートメント
教えてカナコさん! これならわかるAI入門
知りたい! カナコさん 皆で話そうAIのコト
対話システムをつくろう! Python超入門
Kubernetes入門
AWSで作るクラウドネイティブアプリケーションの基本
PowerShell Core入門
徹底研究! ハイブリッドクラウド
マイナビニュース スペシャルセミナー 講演レポート/当日講演資料 まとめ
セキュリティアワード特設ページ

一覧はこちら

今注目のIT用語の意味を事典でチェック!

一覧はこちら

会員登録(無料)

ページの先頭に戻る