早稲田大学(早大)は、金属ナノ粒子の電界トラップを用いることで、配線上に一度クラック(亀裂)が生じた場合でも、自己修復する金属配線を実現したと発表した。

同成果は、同大 理工学術院 基幹理工学部機械科学・航空学科の岩瀬英治准教授、同大大学院 基幹理工学研究科修士1年の古志知也氏らによるもの。詳細は、1月18日~22日にポルトガルのエストリルで開催された国際学会「MEMS2015(The 28th IEEE International Conference on Micro Electro Mechanical Systems)」にて発表された。

今回、研究グループでは、金属配線に自己修復機能を付与することによって、高い導電率と高い伸縮耐性を兼ね備えた配線を実現しようと試みた。これは、伸縮配線を実現するために、従来の研究では"材料"や"形状"に着目したアプローチが試みられてきたのに対し、"機能"に着目した新たなアプローチであるという。

まず、厚さ100nmの金配線、および金属ナノ粒子を分散した液体として半径20nmの金ナノ粒子分散水溶液を用いて、自己修復機能を確認するために、ガラス基板上に幅が一定のクラック(亀裂)をもつ金配線を作製した。金属配線は、金属ナノ粒子を含む液体で覆われている。

そして、そのクラック部のある金属配線に電圧を印加した。すると、クラック部にのみ電界が生じ、金属ナノ粒子⼦がクラック部に引き寄せられる力(誘電泳動力)が働いた。通常の状態で、金属ナノ粒子はファンデルワールス力や静電反発力を受け液中に分散しているが、電圧の印加により誘電泳動力が大きくなると、クラック部に集められる電界トラップ現象が生じる。そのため、クラック部のみに金属ナノ粒子が集まり、集まった金属ナノ粒子によりクラック部が架橋され、金属配線が修復されるという。一度クラックが修復してしまうと、金属配線がつながり電界が生じなくなるため、それ以上過度な修復は行われない。また、金属ナノ粒子はファンデルワールス力や静電反発力を受け液中に分散しているため、クラック部以外の金属配線部に金属ナノ粒子が吸着することもないとしている。

研究グループでは、さらに大きなクラック幅の修復の実現や、さらに高い自己修復機能を目指して改良を行っている。また、現状の構成では液体の封止が必要となるが、液体の封止が構造上、製造上問題になることも考えられるため、金属ナノ粒子をゲル中に分散させた構成での自己修復機能の研究を試みている。

金属ナノ粒子の電界トラップによる金属配線修復の原理

金配線上のクラックを金ナノ粒子(半径20nm)により自己修復した様子。金の配線上に、幅270nmのクラックを人工的に作製し、そのクラックの自己修復を行っている